Proximal Algorithm 6:57 PM

* Now 18t's switch to Boyd's proximal gradient paper: Before proceeding any further let's look at the difference in notation between Calafiore and Boyd

Buyd
5(x)
g(x)
λ ^κ
X ^k
inden starts at 1
$\chi^{k+1} = \text{prox} \left(\chi^{k} - \lambda^{k} \nabla f(\chi^{k}) \right)$

Proximal_aradient_Method_with_variable_step_size (f:: DifferentiableFunction, g:: Nondifferentiable Function, E:: Tolerance)

$\chi = 0 \# say$	
	$\epsilon(0^{\dagger})$
$\lambda^{\circ} = 1e^{-9} \pm say$	
	a no or least to take a skiller cale of a secolor
k=1	function B1_IS_NXI_pt_gNIr (X .: Vector, A .: Scalar)
	N Post Tol stille live course a next house to paint a present of
$ \mathbf{P}=0\cdot5+\mathbf{P}\in(0,1)$	# BECK IEPOLILE INE SEARCH ONE NEXT POINT DEMENDION
While(1)	$(-1)^{k-1}$ + $(k-1)^{k-1}$ (k-1)
	V=V + + V activites ~ V - hinr (v - v ritr i havin memillaria knom itom diven
1 K w K+1_ RT K with at antr (K K-1 D)	$\lambda^{k-1}q$
A, K = pi-is-ind-right (K, A spi	While (1)
the second se	
$\ f\ _{X^{\star \top}-X^{\star}}\ _{2} \leq 2 - \frac{1}{2}$	$Z = Prox (x^k - \lambda \nabla f(x^k)) + fixed stepsize (as in calafiore) would set x^{k+1} = z right away, however as in this$
Harris Harrison and a provised and in	the star size is not sixed
PLACK ABWEWPKL LINNUR ALOGIUM	λη π >1 (k >1 (k >1 (k >1 (k >1 (k >1 (k > 1 (k >
Ples Halasvillemic a fixed mint prohlema	$\left(\left(12\right) < \frac{2}{3} (1 + 1) + \frac{2}{3} (1 + 1) +$
tist #algorithmis usided four problem	$\frac{15}{5}$ [$5(x,x,y)$] $\frac{1}{5}$ [(x,y)]
k = k + 1	
	hreat
end#15 ~ >q	
I that is also downing the solid of the	$p(q, \lambda) = R\lambda$
return y K F mails any remainding unation	
kt kt	
# 15 of the form 11 X -X 112 58	
Cua # whik	
1	

end # uhile	# is of the form X ++ - X + 2 < E	end #15
end # function		rnd # While
	4	return $\lambda^{k} = \lambda, \chi^{k+1} = \Xi \#$ then, $\chi^{k+1} = Prox \left(\chi^{k} - \lambda^{k} \nabla S(\chi^{k})\right)$
		end # function
4.1. proximal minimiz	ation # also known as proximal iteration,	
	proximal point algorithm	
$\chi := prox (\chi^{-})$		
	u{too}.closed pruper innven	
	x	
· (onvergence gurante	$(e = \int for = \lambda^{k} > 0, \sum_{k=1}^{\infty} \lambda^{k} < \alpha$	
Inter retation: NAT	a dignt method applied to Morgan envelope M.	
- 11114 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	and the second official is installed a converse file	
	$\lambda_{1}^{(n)} = \chi^{-} \lambda \nabla M_{\lambda f}(\chi^{k}) + Prox_{\lambda f}(\chi)$	$= \chi - \lambda \nabla M_{\lambda \xi}(\chi)$
	$\chi^{k+1} = \chi^{k} - \lambda \nabla M_{k}(\chi^{k})$	
	∧ <u></u>	
<)Simp	le iteration to find fixed point of prox (x)	
42. Proximal gradien	nl method: (for detailed convergence proof see	Proximal algorithm Calafiore
& f(x)+g(x)	, lan encode constraints on variable x for bei	ng
$\int : \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n$	>Ku{t∞},(p(alued
• The objective is sp	lit into two terms	
no	nunique splitting \rightarrow different splitting leads to different nonunique splitting	∇f : Lips(hitz (infinuous $\leftrightarrow \forall_{x,y}$ $\ \nabla f(x) - \nabla f(y)\ _2 \leqslant L \ x - y\ $ so in the taylor series the effect of second
		the matter barren berger and a strand and a

- the and the state of the second sec

order terms will be negligible

ler	terms	will	be	negligible	
-----	-------	------	----	------------	--

hard the tage of the second se	
$\lambda^{k+1} = pYOk (x^{k} - \lambda \sqrt{E(x^{k})})$	
1 1 1 Ka	
~ J	
2 107 2	
d Beck line search condition	
2	
It is convex, $\{(\mathbf{X},\mathbf{\chi}) \in \{(\mathbf{X},\mathbf{\chi})\}$ all we	
have to check is the	
upperboundedness	

EE 364b Convex Optimization II Page 5

$$\sum_{k} \exp \left(\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)\right)\right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)\right)\right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)\right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)\right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \right)\right)}{\frac{1}{2} \left(k_{k}^{k} + \frac{1}{2} \left(k_{k}^{k}$$

$$\frac{\left(\frac{1}{2}\left(\frac{1}{2}A_{2}\right)^{1/2}\left(\frac{1}{2}A_{2}^{1/2}\right)^$$

thm: proximal operator is the resolvent of subdifferential operator)⁻¹(X) ۵)^{-۱} (۱۵-۲۶(۵)) ۲ 🕲 [Forward-backward splitting]

* ACTININA LIANINUI MANATANI LAUNDA

4.4. Alternating direction method of multipliers ADMM from Proximal Algorithm K f(x)+ g(x) # {5.9] € R"→R u {+ 003, [Dproper]. $= \sqrt{f(x) + g(z)} + x - z = 0$ Fllosed proper convex function] & epiff 70,[], D3 ·Alternating Direction Method of Multipliers: (Dowglas-Rachford splitting) eq: ADMM from prox alg #In an algorithmic slow. z^ — $\chi^{k+1} = pro\chi (z^{k} - u^{k})$ Anthropomorphized: ADMM has 3 iterates u_k is the running sum of the errors in the 1st iterate and the second iterate 78 $\frac{2^{k+1}}{\lambda 9} = \frac{1}{\lambda 9} \frac{1}{\lambda 9}$ both the 1st and 2nd iterates should become same as iterations progress i.e., they become the optimal solution 4 kt1 = 4 k+ x kt1 2 k+1 $(z^{k}, u^{k}) || = - [] /| Prox_{A_{f}}(D) = x^{k+1} || = + u^{k} || Prox_{A_{f}}(D) = z^{k+1} || - 1[] /| u^{k} + x^{k+1} + [] = u^{k+1} || k := k+1$ % x is variable of f() so $Prox_{A_{f}}(\cdot) = x^{k+1}$, similarly z is the variable of g(), so $Prox_{A_{f}}(\cdot) = z^{k+1}$ 32141, in AVMM $\chi_{\mu} \rightarrow \chi^{*}$ $\xi_{k} \rightarrow \chi^{*}$ $\chi_{k} \rightarrow \xi_{k}$ Difference between X^k and Z^k: Remember the underlying optimization problem $\left\{ X^{k} = \forall f \forall \rightarrow X^{k} \in dom f \right\}$ 8 501+9(2) $Z^{k} = \psi g t \rightarrow Z^{k} \in domg$) K-Z=0 Kothay: z^k is the variable of the nonsmooth function x^k is the variable of the smooth function C suffissy the constraints as g encodes constraints as the variable of use smooth minimum as the variable connected with the equality constraint x=z, the difference in x^k and k will converge to zero. Now u^k is the running sum of the difference. >xk satisfies constraints only in the limit · Navantages of ADMM: * the objective terms are handled seperately # Previously in proximal gradient method we handled both of the functions in one forward backward operator action (functions are accessed only through their proximal operators) * most useful proximal operators of 5,9 easy to proximal map but 5+9 is not easy to evaluate. • ADMM when $f = 1_{C}(x), g = 1_{C}(x)$ (X](x) + J(x)) = I x eC n P $\| p(ox_{x}) = [x]_{x} = \prod_{c} (x)$ then the ADMM algorithm becomes: $\chi^{k+1} = \prod_{c} (2^{k} \mu^{k})$ note that the parameter zK+1= TD (XK+1 uk) (A dorsnot appear

$$\begin{cases} (x^{2}, y^{2}) = x^{2} + x^{2} + y^{2} +$$

nu one will admit: (treat the vectors as numbers first, write them as (x+0)2+10 and then backculculate as vectors:

22-222) (nsin 2 yk-2 yz) $) \times + (\frac{1}{p} y - z)^{2} - (\frac{1}{p} y - z)^{2} + z^{2} - \frac{2}{p} yz)$

(unstunt)

 $\| x - \tilde{z} \|_{2}^{2} = \frac{\rho}{2} \left(\| x + \frac{1}{\rho} y - \tilde{z} \|_{2}^{2} \right) + (onstant)$

$$\frac{1}{2} \sum_{\substack{k=1\\ k \neq 1\\ k \neq 1\\ k \neq 2\\ k \neq 2\\ k \neq 2\\ k \neq 2\\ k \neq 1\\ k \neq$$

is the resolvent operator of the proximal				
() at some point, i.e.,	PYOK (☰)=(1+@2⊖) ⁻¹ (☰) #			
ndion				
d] Interpretation of proximal mapping				
is a relation bul				
is a sunction				

5(x)+g(x))}